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A Exchangeability

Assumption 1 assumes that the cluster-level distribution contains sufficient information

on the cluster heterogeneity λj. To motivate this assumption, let us consider a simple binary

treatment model Zj ∈ {0, 1}. When we consider a population distribution with a fixed

number of individual per cluster and random sampling, Assumption 1 is a direct result

of selection-on-observable and exchangeability. Let N∗
j denote the population number of

individuals per cluster. Nj out of N∗
j individuals are randomly sampled. The observed

dataset is {
{Yij, Xij}

Nj

i=1, Zj

}J

j=1

where Yij = Yij(1) · Zj + Yij(0) · (1− Zj) and the underlying population is

{
{Yij(1)

∗, Yij(0)
∗, X∗

ij}
N∗

j

i=1, Zj

}J

j=1

Clusters are independent of each other. Assume the following three assumptions:

(random sampling) There is a random injective function σj : {1, · · · , Nj} → {1, · · · , N ∗
j }
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such that

{Yij(1), Yij(0), Xij}Nj

i=1 =
{
Yσj(i)j(1)

∗, Yσj(i)j(0)
∗, X∗

σj(i)j

}Nj

i=1
.

σj is independent of
({

Yij(1)
∗, Yij(0)

∗, X∗
ij

}Nj∗
i=1

, Zj

)
. Also, for any distinct

(
i1, · · · , iNj

)

Pr
{
σj(1) = i1, · · · , σj(Nj) = iNj

}
=

(
N∗

j −Nj

)
!

N∗
j !

.

(unconfoundedness)

{Yij(1)
∗, Yij(0)

∗}N
∗
j

i=1 ⊥⊥ Zj

∣∣ {X∗
ij

}N∗
j

i=1
.

(exchangeability) For any permutation σ∗ on {1, · · · , N ∗
j },

(
{Yij(1), Yij(0), Xij}

N∗
j

i=1 , Zj

)
d≡
({

Yσ∗(i)j(1), Yσ∗(i)j(0), Xσ∗(i)j

}N∗
j

i=1
, Zj

)
.

Note that the exchangeability assumption restricts dependence structure within a given clus-

ter in a way that the labelling of individuals should not matter. However, it still allows

individual-level outcomes within a cluster to be arbitrarily correlated after conditioning on

control covariates: for example, when Xij includes a location variable, individuals close to

each other is allowed to be more correlated than individuals further away from each other.

Proposition A.1 follows immediately.

Proposition A.1. Under random sampling, unconfoundedness and exchangeability,

{Yij(1), Yij(0)}Nj

i=1 ⊥⊥ Zj

∣∣∣ Fj

where Fj(x) =
1
N∗

j

∑N∗
j

i=1 1{X∗
ij ≤ x}.

Proof. Firstly, find that E[Zj|Fj] is an weighted average of E[Zj|X∗
σ∗(1)j, · · · , X∗

σ∗(NJ )j
] across
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all possible permutations σ∗. Thus, under the exchangeability,

E[Zj|Fj] = E[Zj|X∗
1j, · · · , X∗

Njj
] = E[Zj|X∗

σ∗(1)j, · · · , X∗
σ∗(Nj)j

]

for any permutation σ∗. Let π(Fj) denote E[Zj|Fj]. Then,

Pr
{
Zj = 1

∣∣Fj, {Yij(1), Yij(0)}Nj

i=1

}
= E

[
E
[
Zj

∣∣ {Yij(1)
∗, Yij(0)

∗, X∗
ij

}N∗
j

i=1
, σj

] ∣∣Fj, {Yij(1), Yij(0)}Nj

i=1

]
= E

[
E
[
Zj

∣∣ {Yij(1)
∗, Yij(0)

∗, X∗
ij

}N∗
j

i=1

] ∣∣Fj, {Yij(1), Yij(0)}Nj

i=1

]
= E

[
E
[
Zj

∣∣ {X∗
ij

}N∗
j

i=1

] ∣∣Fj, {Yij(1), Yij(0)}Nj

i=1

]
= E

[
π(Fj)

∣∣Fj, {Yij(1), Yij(0)}Nj

i=1

]
= π(Fj) = Pr

{
Zj = 1

∣∣Fj

}
.

The first equality holds since Fj is a function of {X∗
ij}

N∗
j

i=1 and {Yij(1), Yij(0)}Nj

i=1 is a function

of {Yij(1)
∗, Yij(0)

∗}N
∗
j

i=1 and σj. The second equality holds since random sampling implies

that Zj is independent of σj given
{
Yij(1)

∗, Yij(0)
∗, X∗

ij

}N∗
j

i=1
. The third equality is from

unconfoundedness.

Proposition A.1 suggests propensity score matching based on Fj, the population distribution

function of Xij for cluster j. In this example, the population distribution is assumed to

be discrete to explicitly invoke the exchangeability condition. Assumption 1 extends on

this idea and assumes that the population distribution is possibly continuous and can be

written as a function of a latent low-dimensional factor λj, which controls for the cluster-

level heterogeneity, as does the propensity score π(Fj) in this example.
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B Additional discussion on empirical illustration

B.1 Background

There exists a unique opportunity in research design when studying the question of

whether an increase in minimum wage level leads to higher unemployment rate in the United

States: the state-level variation in minimum wage. In the United States, each state has their

own minimum wage level in addition to the federal minimum wage level and thus we see

states with different minimum wage levels for the same time period. The state-level policy

variation is helpful since it allows us to control for time heterogeneity in a flexible way, by

comparing contemporaneous outcomes across states.

However, there could still be spatial heterogeneity that affects both minimum wage level

and employment at the state level, which complicates the causal interpretation of a minimum

wage regression. The literature has suggested several remedies for this spatial heterogeneity

problem. For example, difference-in-differences (DiD) compares over-the-time difference in

employment rate across states, assuming that spatial heterogeneity only exists as state het-

erogeneity and the state heterogeneity is cancelled out by taking the over-the-time difference

(Card and Krueger, 1994). Some researchers limit their scope of analysis to counties that

are located near the state border to account for spatial heterogeneity (Dube et al., 2010).

Some use a more relaxed functional form assumption on state heterogeneity than DiD, such

as state-specific linear trends (Allegretto et al., 2011, 2017). Some have the data construct

a synthetic state that is comparable to an observed state (Neumark et al., 2014).

The clustered data setup in the paper fits the empirical context of the US minimum

wage application well. Firstly, employment status, the outcome of interest, is observed at

the individual level while the minimum wage level, the regressor of interest, is observed at

the state level, i.e. the dataset is hierarchical. Secondly, an assumption that is shared in the

minimum wage literature as a common denominator is that there is no dependence across

states. In other words, it is believed that the decision of whether and how much the state
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minimum wage level changes is only determined by what happens within the state. This

corresponds to the clusters being independent.

Building on this observation, I apply the results of Sections 2 and 3 in the main text to

control for the spatial heterogeneity in estimating the disemployment effect of the minimum

wage. The key assumption in doing so is that the state-level distribution of individual-level

demographic and socioeconomic characteristics sufficiently controls for the spatial hetero-

geneity. If the information that state legislators look at when deciding their state’s minimum

wage level is completely incorporated in the state-level distribution, the assumption would

naturally hold. This ‘distribution-as-control’ approach is complementary to assuming that

there exists some unrestricted and time-invariant state-level heterogeneity as in the two-way

fixed-effect specification in the DiD literature. In the ‘distribution-as-control’ approach, the

state-level heterogeneity is allowed to vary over time, but restricted in the sense that it is a

function of the (near-)observable state-level distribution of individual-level characteristics.

B.2 Estimation

Following Allegretto et al. (2011); Neumark et al. (2014); Allegretto et al. (2017), I fo-

cus on the teen employment since it is likely that teenagers work at jobs that pay near the

minimum wage level compared to adults, thus being more responsive to a change in the min-

imum wage level. I constructed a dataset by pooling the Current Population Survey (CPS)

data from 2000 to 2021, collecting the same demographic control covariates on teenagers as

Allegretto et al. (2011), and additional control covariates on all individuals. The additional

variables were collected for every individual to construct state-level distributions, since in-

formation only from teenagers may not accurately reflect the state-level labor market status.

Let Ijt denote the set of teens in state j at time t and Ĩjt denote the set of all individuals

in state j at time t, from the CPS: Ijt ⊂ Ĩjt. Since the CPS is collected every month, the

dataset contains 264 = 12 · 22 time periods in total.

The main regression specification I use is motivated from Allegretto et al. (2011). As
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one of the two main regression specifications, Allegretto et al. (2011) estimates the following

linear model: for teen i in state j at time t,

Yijt = αj + δcd(j)t + β logMinWagejt +Xijt
⊺θ1 + θ2EmpRatejt + Uijt. (1)

There are two noteworthy observations to be made here. Firstly, the regressor of interest

MinWagejt varies on the state-by-time level, making state-by-time fixed-effects infeasible.

This is exactly the same type of multicollinearity problem discussed in Section 2 of the main

text. When treatment is assigned at the cluster level, treatment effects cannot be identi-

fied under a model with fully flexibly cluster heterogeneity. Thus, Allegretto et al. (2011)

uses census-division-by-time fixed-effects by grouping 50 states and Washington D.C. into 9

census divisions: δcd(j)t. Secondly, Equation (1) already implements the idea of aggregating

individual-level information: the state-by-time employment rate EmpRatejt computed from

Yijt. In using EmpRatejt, a conscious choice was made by the researcher to use the mean to

summarize the individual-level information for each state.

In this paper, I build upon the two observations above and develop a more flexible

regression model:

Yijt = αj + λjt
⊺δt + β logMinWagejt +Xijt

⊺θ1 + θ2EmpRatejt + Uijt. (2)

In the regression model, λjt is a time-varying state-level latent factor that I assume to be

one-to-one with state-level distributions of individual-level characteristics. Specifically, I use

the following two variables: EmpHistoryijt and WageIncijt. By using λjt as a control, I

implement the ‘distribution-as-control’ approach. The latent factor λjt allows us to control

for the spatial heterogeneity while not subsuming the variation in MinWagejt. In doing so,

λjt summarizes the available information at the individual level, in a more flexible way than

the simple mean as in EmpRatejt. In the next two paragraphs, I provide more detail on

how I estimate the latent factor λjt, from the two state-level distributions.
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Firstly, I apply the K-means clustering algorithm to the distribution of EmpHistoryijt,

an individual-level employment history variable:

EmpHistoryijt =
(
EmpStatusijt−1, · · · , EmpStatusijt−4

)
∈ {Emp,Unemp,NotInLaborForce}4 =: X .

EmpStatusijt is an employment status variable for individual i in state j at time t. It is a

categorical variable with three possible values: being employed, being unemployed, and not

being in the labor force. EmpHistoryijt concatenates EmpStatusijτ for τ = t−4, · · · , t−1;

EmpHistoryijt is a four-month-long history of employment status. Since EmpStatusijt

is a categorical variable with a finite support of three elements, EmpHistoryijt has a finite

support of 81 elements. Note that Yijt = 1 ⇔ EmpStatusijt = Emp and thus EmpHistoryijt

can be understood as a vector of lagged outcome variables, but defined for both teenagers and

adults. To aggregate the information from EmpHistoryijt to learn about the labor market

fundamental of a given state, I compute the empirical distribution function: for x ∈ X ,

F̂jt(x) =
1∑

i∈Ĩjt ω̃i

∑
i∈Ĩjt

1{EmpHistoryijt = x}ω̃i

{ω̃i}i are the longitudinal weights provided by the IPUMS-CPS to construct a four-month-

long panel using the CPS sample. Note that Ĩjt is used instead of Ijt; information from

adults’ employment history is included. When evaluating the distance between states mea-

sured in terms of F̂jt, I use the uniform weighting function since X is a finite set. By applying

the K-means algorithm to
{
F̂jt

}J
j=1

, I get {λ̂jt,EmpHistory}Jj=1.

Secondly, I apply the functional PCA to the distribution of WageIncijt. WageIncijt

is a wage income variable for individual i in state j at time t. Since the current and

past unemployment rates are already controlled with EmpRatejt and the distribution of

EmpHistoryijt, I consider a truncated distribution of WageIncijt by focusing on individuals
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whose wage income is strictly positive. The wage income variable comes from the March

Annual Social and Economic Supplement (ASEC). The ASEC sample is collected only once

a year in March and is different from the basic monthly CPS sample. Let Ĭjt denote the set

of all individuals with positive wage income in state j, from the most recent ASEC sample

at time t. Then, Ĭjt = Ĭjt+1 except when t corresponds to a month of March and Ĭjt 6= Ĩjt

in general. To aggregate the information from WageIncijt, I compute the product of the

state-level conditional densities of logWageIncijt. The j-th row and k-th column component

of the estimated product matrix M̂t is

M̂jkt =


∑

i∈Ĭjt,i′∈Ĭkt∑
i∈Ĭjt,i′∈Ĭkt

ω̆iω̆i′

∫
R

ω̆iω̆i′
h2 K

(
x−logWageIncijt

h

)
·K
(

x−logWageInci′kt
h

)
w(x)dx, if j 6= k∑

i,i′∈Ĭjt,i ̸=i′∑
i,i′∈Ĭjt,i ̸=i′ ω̆iω̆i′

∫
R

ω̆iω̆i′
h2 K

(
x−logWageIncijt

h

)
·K
(

x−logWageInci′jt
h

)
w(x)dx, if j = k

.

{ω̆i}i are the cross-sectional weights provided by the IPUMS-CPS to construct a cross-section

with the ASEC sample. For the weighting function w, I use the uniform weighting on [0,15]:

w(x) = 1
1001

1
{
x ∈ {0, 15/1000, · · · , 15}

}
. By applying the eigenvalue decomposition to

M̂t, I get {λ̂jt,WageInc}Jj=1. An estimate for the entire latent factor λjt is obtained from

concatenating λ̂jt,EmpHistory and λ̂jt,WageInc.

B.2.1 Cross-validation on the dimension of the latent factor

Both of the latent factor estimation methodologies introduced in the paper involve an

unknown parameter: ρ, the dimension of the latent factor. To decide on ρ, I conduct a 5-fold

cross-validation exercise for a given time t.

1. Fix ρ and randomly split the individual indices for a given state into five subsets:

Ĩjt = ∪5
k=1Ĩjt,k and Ĭjt = ∪5

k=1Ĭjt,k, respectively for EmpHistoryijt and WageIncijt.

For each k, define the train sets
{
Ĩjt,−k = Ĩjt \ Ĩjt,k

}J
j=1

and
{
Ĭjt,−k = Ĭjt \ Ĭjt,k

}J
j=1

.

2. For each k, construct
{
F̂jt,−k(x)

}J
j=1

and M̂t,−k from their respective train sets and

estimate λjt,EmpHistory and λjt,WageInc with the predetermined value of ρ.
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3. Evaluate the out-of-sample performance of the estimated models from Step 2, using

the test sets. For each k, construct
{
F̂jt,k

}J
j=1

and M̂t,k with their respective test sets{
Ĩjt,k

}J
j=1

and
{
Ĭjt,k

}J
j=1

and let

SSFEt,EmpHistory(ρ) =
1

5

5∑
k=1

J∑
j=1

∑
x∈X

(
F̂jt,k(x)− Ĝ−k,EmpHistory

(
λ̂jt,−k,EmpHistory

))2
,

SSFEt,WageInc(ρ) =
1

5

5∑
k=1

∥∥∥M̂t,k − M̃t,−k

∥∥∥
F

2

.

Ĝ−k,EmpHistory

(
λ̂jt,−k,EmpHistory

)
is the fitted value of the empirical distribution function Fjt

from applying the K-means algorithm with ρ groups to
{
F̂jt,−k

}J
j=1

from the train set. M̃t,−k

is the fitted value of the product matrix M from applying the eigenvalue decomposition to

the estimated product matrix M̂t,−k from the train set and suppressing the J − ρ smallest

eigenvalues to zero.

The random splitting is a valid strategy in constructing a test set and a train set since

the individuals are assumed to be iid within a cluster. To evaluate the performance of a

latent factor model with the dimension ρ, I use the same criteria used in estimating the

latent factor model. To see if the cross-validation result is stable across t, I consider the first

and the last months of the timeframe—January 1990 and December 2021—and a month in

the middle—January 2007—, which is used for a cross-sectional regression in the main text.

ρ

t 2 3 5 7

January 1990 0.5861 0.5854 0.5616 0.5558

January 2007 0.6139 0.5891 0.5970 0.5991

December 2021 0.7690 0.7141 0.7581 0.7592

average 0.6503 0.6295 0.6389 0.6380

Table 1: SSFEt,EmpHistory(ρ)
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ρ

t 1 2 3 5 7

March 1989 0.7018 0.6847 0.6852 0.6852 0.6855

March 2006 1.0001 0.9826 0.9834 0.9842 0.9842

March 2021 0.8711 0.8006 0.8010 0.8018 0.8019

average 0.9011 0.8833 0.8840 0.8845 0.8846

Table 2: SSFEt,WageInc(ρ)

The distribution of WageIncijt is only observed once a year, in March. Thus, the
distributions of WageIncijt at the time periods above are used as control for the three
months I consider: January 1990, January 2007 and December 2021.
The triangular kernel is used and the tuning parameter h is selected by the density
function in R.

Table 1 contains the cross-validation results for the K-means algorithm on the distribu-

tion of EmpHistoryijt and Table 2 contains the cross-validation results for the functional

PCA on the distribution of WageIncijt. Table 1 shows that the cross-validation result is

not stable across t for the K-means algorithm on the distribution of EmpHistoryijt. The

cross-validation result from January 1990 suggests using a latent factor model with larger

dimension while the other two cross-validation results suggest using a latent factor model

with ρKmeans = 3. I take the average of the three cross-validation results and let ρKmeans = 3.

As a robustness check, I also present the estimation results from ρKmeans = 5 below: Section

B.3.2. On the other hand, the cross-validation result is stable across t for the functional

PCA on the distribution of WageIncijt. I let ρfPCA = 2.

When the sole purpose of estimating the cluster-level latent factors λjt is to use the factors

as controls for the spatial/state-level heterogeneity, one could repeat the cross-validation

exercise for every t and let ρ vary across t. However, when the state-level heterogeneity is

an object of interest on this own, letting ρ time-invariant can be helpful since then we could

connect the support of the latent factor Sλ across different time periods and obtain a pooled

estimate on the equilibrium/contextual effect that the state-level distribution Fjt has on
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individual-level outcomes. This point on the aggregate-level heterogeneity will be reiterated

in Section B.3.2.

B.3 Empirical results

B.3.1 Latent factor estimation for January 2007

Before discussing the estimation results from the regression model (2), here I illustrate

how the two latent factor estimation methods are implemented on an actual dataset, by

looking at a snapshot of the dataset. As for the timing of the snapshot, I choose January

2007 as I did in the main text, since January 2007 was when the most states raised their

minimum wage levels without a federal minimum wage raise.

The outcome of the K-means latent factor estimation is a grouping structure on states.

Since EmpHistoryijt captures the latest four month history of individual employment status,

the latent factor estimation for January 2007 assigns 50 states and Washington D.C. into

one of the ρKmeans = 3 groups based on the state-level distribution of employment history

from September 2006 to December 2006. Figure 1 contains the grouping result and below is

the list of states in each group:

Group 1: Arizona*, Arkansas, California*, DC, Louisiana, Michigan, Mississippi,

New Mexico, New York*, Oklahoma, Oregon*, South Carolina, Tennessee,

West Virginia

Group 2: Alabama, Connecticut*, Delaware*, Florida*, Georgia, Hawaii*, Idaho,

Illinois, Indiana, Kentucky, Maine, Maryland, Massachusetts*, Missouri*,

Nevada, New Jersey, North Carolina*, Ohio*, Pennsylvania*,

Rhode Island*, Texas, Utah, Virginia

Group 3: Alaska, Colorado*, Iowa, Kansas, Minnesota, Montana*, Nebraska,

New Hampshire, North Dakota, South Dakota, Vermont*, Washington*,

Wisconsin, Wyoming

11



Figure 1: Grouping of states from the distribution of EmpHistoryijt, January 2007

50 states and Washing D.C. are grouped into three groups based on the state-level
distribution of individual-level employment history from September 2006 to Decem-
ber 2006, which tracks employment, unemployment, and labor force participation.
Colors—red, blue, green—denote different groups and darker shades denote an in-
crease in the minimum wage level in January 2007.

The states that raised their minimum wage level starting January 2007 are denoted with

boldface and asterisk in the list and with darker shade in the figure. We can estimate

a ‘treatment effect,’ by interpreting the increase in the minimum wage level as a binary

treatment. The within-group comparison is free of the potential treatment endogeneity

problem when the distribution of EmpHistoryijt gives us unconfoundedness.

Table 3 shows how the groups estimated using the distribution of EmpHistoryijt differ

from one another. Table 3 takes three subsets of X and computes the proportion of each

subset across groups, putting equal weights over states. The three subsets are:

- Always-employed: {Emp}4

- Ever-unemployed:
{
(EmpStatus−1, · · · ) : EmpStatusτ = Unemp for some τ

}
- Never-in-the-labor-force: {NotInLaborForce}4
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group 1 2 3

Always-employed 0.520 0.588 0.645

Ever-unemployed 0.076 0.060 0.060

Never-in-the-labor-force 0.337 0.281 0.227

Table 3: Heterogeneity across states, January 2007

The table reports proportions of three types of employment history, across 50 states
and Washington D.C. The proportions of each employment history are firstly computed
within states and then the group mean is computed by putting equal weights on states.

‘Always-employed’ is the proportion of individuals who have been continuously employed

from September 2006 to December 2006, ‘Ever-unemployed’ is the proportion of individuals

who was unemployed for at least one month, and ‘Never-in-the-labor-force’ is the proportion

of individuals who have never been in the labor force from September 2006 to December

2006. Group 1 states have the lowest employment rate and Group 3 states have the highest.

Secondly, to illustrate how the functional PCA is applied to a real dataset, I look at

March 2006 ASEC sample; this sample is used for the latent factor estimation on the dis-

tribution of WageIncijt for January 2006, due to the ASEC sample being observed only

once a year. After applying the eigenvalue decomposition to the product matrix computed

from the conditional densities of logWageIncijt given WageIncijt > 0 across 50 states and

Washington D.C., the second to the fourteenth largest eigenvalues are plotted in Figure 2.

The biggest eigenvalue is much bigger than the rest of the eigenvalues, with the associated

eigenvectors being mostly constant across states, and is therefore omitted. We can see that

the second biggest eigenvalue is much bigger than the third to the fourteenth eigenvalues.

This means that the additional gain in explaining the variation across the state-level con-

ditional densities of logWageIncijt is much bigger when we increase ρfPCA from one to

two, than when we further increase ρfPCA from two. This observation is coherent with the

cross-validation results from the previous subsection that choose ρfPCA = 2.
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Figure 2: The scree plot of eigenvalues from the distribution of WageIncijt, March 2006

March 2006 ASEC sample is used in constructing the wage income densities. WageIncijt is
truncated at WageIncijt > 0 and logged. The biggest eigenvalue is not included in the plot. Its
value is 15.37.

In addition, I plotted the second component of the estimated latent factor in Figure

3. Several northeastern states and Alaska have higher values of the second component

of λ̂jt,WageInc while some southern states such as Arkansas and Mississippi and mountain

states such as Montana have lower values. We do not have an interpretation for the second

Figure 3: The second component of λ̂jt,WageInc across states, March 2006

March 2006 ASEC sample is used in constructing the wage income densities. WageIncijt is
truncated at WageIncijt > 0 and logged. The darker shade corresponds to a higher value of
λ̂2jt,WageInc and the lighter shade correspond to a lower value.
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component of λ̂jt,WageInc; Figure 3 only tells us which states are similar in that regard. Not

being able to interpret the value of λ̂jt,WageInc is due to the rotation on the latent factor

and is a definite caveat of the latent factor models suggested in the paper. However, as

discussed in the main text, not being able to interpret the estimates does not stop us from

having an interpretable model and we can still conduct comparative statistics in terms of

the distribution of WageIncijt.

B.3.2 Pooled regression on disemployment effect

Now, I discuss the regression results from (2). Table 4 expands Table 4 of the main text

and includes estimation results when ρKmeans = 5. As in the main text, I use time-specific

coefficients for λjt,EmpHistory and time-invariant coefficients for λjt,WageInc. Columns (2) and

(5) contain the estimation results when ρKmeans = 3 and columns (3) and (6) contain the

estimation results when ρKmeans = 5. The estimation results are stable across the choice of

ρKmeans.

β̂ (1) (2) (3) (4) (5) (6)

-0.109∗ -0.052 -0.061 -0.029∗ -0.030∗ -0.033∗∗

(0.061) (0.078) (0.086) (0.017) (0.017) (0.016)

time FE X X X O O O

EmpHistory X O (ρ = 3) O (ρ = 5) X O (ρ = 3) O (ρ = 5)

WageInc X O O X O O

T 1 (January 2007) 264 (2000-2021)

Table 4: Disemployment effect estimates across specifications

The categorical latent factors from the distribution of EmpHistoryijt are given time-
varying loadings while the continuous latent factors from the distribution ofWageIncijt
are given time-invariant loadings:

λjt
⊺δt = λjt,EmpHistory

⊺δt,EmpHistory + λjt,WageInc
⊺δWageInc.

The standard errors are clustered at the state level.
*, **, ** denote significance level 0.1, 0.05, 0.001, respectively.
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In the regression model (2), the state minimum wage level MinWagejt enters after taking

logarithm, following the convention in the literature. Thus, by dividing the slope coefficient

on logMinWagejt with the average teen employment rate from the dataset, which is 0.328,

we get the elasticity interpretation. Based on columns (4)-(6) of Table 4, an one percentage

point increase in the minimum wage level reduces teen employment by 0.087-0.099 percentage

point. Neumark and Shirley (2022) provides a meta-analysis of studies on teen employment

and minimum wage and find that the mean of the estimates across studies is -0.170 and the

median is -0.122. By controlling for the state-level heterogeneity in a more rigorous manner

using the state-level distributions, I find that the existing literature slightly overestimates

the wage elasticity of teen employment.

β̂ (1) (2) (3)

{λEmpHistory = e1} -0.027 -0.027∗ -0.027

(0.017) (0.016) (0.017)

{λEmpHistory = e2} -0.029∗ -0.028 -0.028

(0.017) (0.017) (0.017)

{λEmpHistory = e3} -0.030∗ -0.042∗ -0.042∗

(0.017) (0.024) (0.023)

time FE O O O

EmpHistory X O O

WageInc X X O

T 264 (2000-2021)

Table 5: Aggregate-level heterogeneity in disemployment effect

The categorical latent factors from the distribution of EmpHistoryijt are given time-
varying loadings while the continuous latent factors from the distribution ofWageIncijt
are given time-invariant loadings:

λjt
⊺δt = λjt,EmpHistory

⊺δt,EmpHistory + λjt,WageInc
⊺δWageInc.

The standard errors are clustered at the state level.
*, **, ** denote significance level 0.1, 0.05, 0.001, respectively.
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Table 5 discuss the aggregate heterogeneity in disemployment effect:

Yijt = logMinWagejt ·

(∑
r

βr1{λjt,EmpHistory = er}

)

+ αj + λjt
⊺δt +Xijt

⊺θ1 + θ2EmpRatejt + Uijt. (3)

The coefficient on the minimum wage is a function of the distribution of EmpHistoryijt.

To connect the ‘labels’ of the grouping structure across different time periods, I reordered

λjt,EmpHistory across t so that Group 1 (i.e. λjt,EmpHistory = e1) is always the group of

states with lower employment rate and lower labor force participation rate and Group 3 (i.e.

λjt,EmpHistory = e3) is always the group of states with higher employment rate and higher

labor force participation rate. Columns (3)-(4) show us that teens in Group 3 states are

more affected by the minimum wage than teens in Group 1 states. This may happen for a

variety of reasons; e.g., Group 3 states may have thicker labor supply on lower end of the

wage distribution and thus low-skilled teenagers get replaced more easily.

Lastly, I study the interaction between the aggregate-level heterogeneity and the individual-

level heterogeneity in terms of race. The left panel of Table 6 estimates

Yijt = logMinWagejt ·
(
β11{Whiteij = 1}+ β01{Whiteij = 0}

)
+ αj + λjt

⊺δt +Xijt
⊺θ1 + θ2EmpRatejt + Uijt. (4)

Disemployment effect is modeled to be heterogeneous at the individual level in terms of race.

β1 is the disemployment effect coefficient on white teenagers and β0 is the disemployment

effect coefficient on non-white teenagers. The right panel of Table 6 estimates

Yijt = logMinWagejt ·
( ∑

w=0,1

∑
r

βw,r1{Whiteij = w, λjt,EmpHistory = er}
)

+ αj + λjt
⊺δt +Xijt

⊺θ1 + θ2EmpRatejt + Uijt. (5)
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The aggregate-level heterogeneity in terms of the distribution of EmpHistoryijt is intro-

duced, in addition to the individual-level heterogeneity in terms of race. β1,r is the disemploy-

ment effect coefficient on white teenagers in Group r states while β0,r is the disemployment

effect coefficient on non-white teenagers in Group r states.

From the left panel of Table 6, we see that a raise in the minimum wage level decreases

the employment rate of white teens and increases the employment rate of non-white teens.

The racial disparity interacts with the labor market fundamentals. The right panel of Table

6 shows us that the racial disparity persists across groups and interact with the aggregate

heterogeneity in a way that the employment effect for non-white teenagers is mitigated

in Group 3. Figure 4 contains confidence intervals for interactive disemployment effect

coefficients from Column (4) of Table 5 in the main text and Column (4) of Table 6.

0 group

0.05

-0.1

0.1

-0.05

1 2 3

β̂

Age < 19 Age 19

0 group

0.05

-0.1

0.1

-0.05

1 2 3

β̂

White Non-white

Figure 4: 95% confidence intervals on disemployment effect coefficient

The x-axis denotes the group. The color denotes the individual-level control covariate.
The y-axis is estimates and confidence interval.
Comparison across colors at each point of the x-axis relates to individual heterogeneity and
comparison across x-axis for the same color relates to aggregate heterogeneity.
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β̂ (1) (2) (3) (4)

{White = 1} -0.061∗∗∗ -0.061∗∗∗

(0.018) (0.018)

×{λEmpHistory = e1} -0.057∗∗∗ -0.057∗∗∗

(0.018) (0.018)

×{λEmpHistory = e2} -0.060∗∗∗ -0.060∗∗∗

(0.019) (0.019)

×{λEmpHistory = e3} -0.069∗∗ -0.069∗∗

(0.026) (0.026)

{White = 0} 0.054∗∗∗ 0.054∗∗∗

(0.016) (0.016)

×{λEmpHistory = e1} 0.058∗∗∗ 0.058∗∗∗

(0.017) (0.017)

×{λEmpHistory = e2} 0.057∗∗∗ 0.057∗∗∗

(0.016) (0.016)

×{λEmpHistory = e3} 0.036 0.036

(0.024) (0.024)

EmpHistory O O O O

WageInc X O X O

T 264 (2000-2021)

Table 6: Individual-level and interactive heterogeneity in disemployment effect

The categorical latent factors from the distribution of EmpHistoryijt are given time-
varying loadings while the continuous latent factors from the distribution ofWageIncijt
are given time-invariant loadings:

λjt
⊺δt = λjt,EmpHistory

⊺δt,EmpHistory + λjt,WageInc
⊺δWageInc.

The standard errors are clustered at the state level.
*, **, ** denote significance level 0.1, 0.05, 0.001, respectively.
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C Proofs

C.1 Theorem 1

Firstly, we want to show that the objective function constructed with the estimated latent

factors is close to the infeasible objective function with the rotated true latent factors: for

any θ ∈ ÃΘ,

∥∥∥∥∥ 1J
J∑

j=1

m (Wj; θ)

∥∥∥∥∥
2

=

∥∥∥∥∥ 1J
J∑

j=1

m
(
Ŵj; θ

)∥∥∥∥∥
2

+
1√
J
· op(1).

By taking the first-order Taylor’s expansion of m with regard to λ̂j around Aλj,

∣∣∣∣∣∣
∥∥∥∥∥ 1J

J∑
j=1

m (Wj; θ)

∥∥∥∥∥
2

−

∥∥∥∥∥ 1J
J∑

j=1

m
(
Ŵj; θ

)∥∥∥∥∥
2

∣∣∣∣∣∣ ≤
∥∥∥∥∥ 1J

J∑
j=1

m (Wj; θ)−
1

J

J∑
j=1

m
(
Ŵj; θ

)∥∥∥∥∥
2

=

∥∥∥∥∥ 1J
J∑

j=1

Rj

(
λ̂j, Aλj

)(
λ̂j − Aλj

)∥∥∥∥∥
2

.

We can apply the Taylor’s expansion since the mapping λ 7→ m
(
Wj(λ); θ

)
is continuously

differentiable on ASλ for each θ ∈ ÃΘ: for any θ ∈ ÃΘ and any λ′ in the interior of ASλ,

m(Wj(λ
′); θ) = m

(
Wj(A

−1λ′); Ã−1θ
)

∂

∂λ
m(Wj(λ); θ)

∣∣∣
λ=λ′

=
∂

∂λ
m
(
Wj(A

−1λ); Ã−1θ
)∣∣∣

λ=λ′

=
∂

∂λ
m
(
Wj(λ); Ã

−1θ
)∣∣∣

λ=A−1λ′
· A−1

The first two equalities hold from Assumption 2.d. The last equality holds from the chain

rule and the differentiability of the mapping λ 7→ m
(
Wj(λ); θ

)
at A−1λ′ ∈ Sλ for Ã−1θ ∈ Θ

from Assumption 2.e.

Note that Rj(·, ·) in the remainder term is a l× ρ matrix; if λj is a scalar, Rj would be a

first-order derivative of m with regard to λj, evaluated at some point between Aλj and λ̂j.

20



Let R̃j denote an arbitrary row of Rj. By applying the Cauchy-Schwarz inequality to the

j-th cluster in the summation,

∣∣∣R̃j

(
λ̂j, Aλj

)(
λ̂j − Aλj

)∣∣∣ ≤ ∥∥∥R̃j

(
λ̂j, Aλj

)∥∥∥
2

∥∥∥λ̂j − Aλj

∥∥∥
2
.

By applying the Cauchy-Schwarz inequality again,

∣∣∣∣∣ 1J
J∑

j=1

R̃j

(
λ̂j, Aλj

)(
λ̂j − Aλj

)∣∣∣∣∣ ≤ 1

J

J∑
j=1

∥∥∥R̃j

(
λ̂j, Aλj

)∥∥∥
2

∥∥∥(λ̂j − Aλj

)∥∥∥
2

≤

(
1

J

J∑
j=1

∥∥∥R̃j

(
λ̂j, Aλj

)∥∥∥
2

2
) 1

2
(
1

J

J∑
j=1

∥∥∥λ̂j − Aλj

∥∥∥
2

2
) 1

2

.

Then, by summing over the rows of Rj, we get

∥∥∥∥∥ 1J
J∑

j=1

Rj

(
λ̂j, Aλj

)(
λ̂j − Aλj

)∥∥∥∥∥
2

2

≤

(
1

J

J∑
j=1

∥∥∥Rj

(
λ̂j, Aλj

)∥∥∥
F

2
)(

1

J

J∑
j=1

∥∥∥λ̂j − Aλj

∥∥∥
2

2
)
.

1
J

∑J
j=1

∥∥λ̂j − Aλj

∥∥
2

2 is 1
J
· op(1) from the conditions of Theorem 1.

It remains to show that 1
J

∑J
j=1 ‖Rj‖F 2 is Op(1). From the Taylor’s theorem, the matrix

Rj can be written as an integral as follows:

Rj =

∫ 1

0

∂

∂λ
m (Wj(λ); θ)

∣∣∣
λ=Aλj+t(λ̂j−Aλj)

dt

=

∫ 1

0

∂

∂λ
m
(
Wj(λ); Ã

−1θ
) ∣∣∣

λ=λj+t(A−1λ̂j−λj)
· A−1dt.

Find that

‖Rj‖F 2 ≤ lρ

(
ρ sup

t∈[0,1]

∥∥∥∥m(Wj(λ); Ã
−1θ
)∣∣∣

λ=λj+t(A−1λ̂j−λj)

∥∥∥∥
∞
·
∥∥A−1

∥∥
∞

)2
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by finding the components of ∂
∂λ
m and A−1 with the biggest absolute values. Then,

1

J

J∑
j=1

‖Rj‖F
2 ≤ lρ3

J

J∑
j=1

sup
t∈[0,1]

∥∥∥∥ ∂

∂λ
m
(
Wj(λ); Ã

−1θ
) ∣∣∣

λ=λj+t(A−1λ̂j−λj)

∥∥∥∥
F

2

·
∥∥A−1

∥∥
F

2
.

Lastly, from Assumption 2.f,
∥∥A−1

∥∥
F

is bounded with probability going to one. Thus,

maxj
∥∥A−1λ̂j − λj

∥∥
2
≤
∥∥A−1

∥∥
F
·maxj

∥∥λ̂j −Aλj

∥∥
2
≤ η holds with probability going to one,

from the condition of Theorem 1. In addition, conditioning on the event that maxj
∥∥A−1λ̂j−

λj

∥∥
2
≤ η and

∥∥A−1
∥∥
F
≤ M̃ , we have

1

J

J∑
j=1

‖Rj‖F
2 ≤ M̃2lρ3

J

J∑
j=1

sup
∥λ′−λj∥2≤η

sup
θ∈Θ

∥∥∥∥ ∂

∂λ
m (Wj(λ); θ)

∣∣∣
λ=λ′

∥∥∥∥
F

2

.

From Assumption 2.e, the RHS of the inequality above is bounded in expectation byMM̃2lρ3.

Consequently, we have that 1
J

∑J
j=1 ‖Rj‖F 2 is Op(1): for any ε > 0, find large enough J∗

such that the probability that maxj
∥∥A−1λ̂j − λj

∥∥
2
≤ η

M̃
and

∥∥A−1
∥∥
F
≤ M̃ holds is bigger

than 1− ε
3
and large enough M∗ such that the probability of the RHS of the inequality above

being bigger than M∗ is smaller than ε
3
. Then, for J ≥ J∗,

Pr

{
1

J

J∑
j=1

‖Rj‖F
2 ≥ M∗

}

≤ Pr

{
1

J

J∑
j=1

‖Rj‖F
2 ≥ M∗,max

j

∥∥∥A−1λ̂j − λj

∥∥∥
2
≤ η,

∥∥A−1
∥∥
F
≤ M̃

}
+

ε

3

≤ Pr

{
M̃2lρ3

J

J∑
j=1

sup
∥λ′−λj∥2≤η

sup
θ∈Θ

∥∥∥∥ ∂

∂λ
m (Wj(λ); θ)

∣∣∣
λ=λ′

∥∥∥∥
F

2

≥ M∗

}
+

ε

3
≤ 2ε

3
.

Note that the stochastic boundedness is uniform across θ ∈ ÃΘ since the quantity in the

last probability involves a supremum over Θ.

Having shown that the feasible objective function is close to the infeasible objective

function, I now show that the consistency of the infeasible GMM estimator leads to the
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consistency of the feasible GMM estimator. Find that

∥∥∥∥∥ 1J
J∑

j=1

m
(
Wj; θ̂

)∥∥∥∥∥
2

=

∥∥∥∥∥ 1J
J∑

j=1

m
(
Ŵj; θ̂

)∥∥∥∥∥
2

+
1√
J
· op(1)

≤

∥∥∥∥∥ 1J
J∑

j=1

m
(
Ŵj; Ãθ

0
)∥∥∥∥∥

2

+
1√
J
· op(1)

=

∥∥∥∥∥ 1J
J∑

j=1

m
(
Wj; Ãθ

0
)∥∥∥∥∥

2

+
1√
J
· op(1)

=
∥∥E [m (W ∗

j ; θ
0
)]∥∥

2
+ op(1) = op(1).

The inequality is from the definition of the GMM estimator. The first equality holds for

a random object θ̂ since the stochastic boundedness of 1
J

∑J
j=1 ‖Rj‖F 2 does not depend on

the choice of θ. The second to the last equality is from Assumption 2.c-d. Again, from

Assumption 2.c-d, we get

∥∥∥∥∥ 1J
J∑

j=1

m
(
Wj; θ̂

)∥∥∥∥∥
2

−
∥∥∥E [m(Wj; θ̂

)]∥∥∥
2

=

∥∥∥∥∥ 1J
J∑

j=1

m
(
W ∗

j ; Ã
−1θ̂
)∥∥∥∥∥

2

−
∥∥∥E [m(W ∗

j ; Ã
−1θ̂
)]∥∥∥

2
= op(1).

The first equality holds from Assumption 2.d and the second equality holds from Assumption

2.c. Then,

∥∥∥E [m(W ∗
j ; Ã

−1θ̂
)]∥∥∥

2
=
∥∥∥E [m(Wj; θ̂

)]∥∥∥
2
=

∥∥∥∥∥ 1J
J∑

j=1

m
(
Wj; θ̂

)∥∥∥∥∥
2

+ op(1) = op(1).

We get the consistency of Ã−1θ̂ to θ0 from Assumption 2.b and thus the consistency of θ̂ to
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Ãθ0 from Assumption 2.f: for any ε > 0,

Pr
{∥∥θ̂ − Ãθ0

∥∥
2
≥ ε
}
≤ Pr

{∥∥Ã∥∥
F
·
∥∥Ã−1θ̂ − θ0

∥∥
2
≥ ε
}

≤ Pr
{∥∥Ã∥∥

F
·
∥∥Ã−1θ̂ − θ0

∥∥
2
≥ ε,

∥∥Ã∥∥
F
≤ M̃

}
+ Pr

{∥∥Ã∥∥
F
> M̃

}
≤ Pr

{∥∥Ã−1θ̂ − θ0
∥∥
2
≥ ε

M̃

}
+ Pr

{∥∥Ã∥∥
F
> M̃

}
= o(1).

C.2 Theorem 2

Recall that

∥∥∥∥∥ 1J
J∑

j=1

m
(
Ŵj; θ

)
− 1

J

J∑
j=1

m (Wj; θ)

∥∥∥∥∥
2

= Op(1) ·
1√
J
·

(
J∑

j=1

∥∥∥λ̂j − Aλj

∥∥∥
2

2
) 1

2

= Op(1)op(1)
1√
J

from the proof of Theorem 1 and therefore

∥∥∥∥∥ 1√
J

J∑
j=1

m
(
Ŵj; θ̂

)∥∥∥∥∥
2

≥

∥∥∥∥∥ 1√
J

J∑
j=1

m
(
Wj; θ̂

)∥∥∥∥∥
2

−

∥∥∥∥∥ 1√
J

J∑
j=1

m
(
Ŵj; θ̂

)
− 1√

J

J∑
j=1

m
(
Wj; θ̂

)∥∥∥∥∥
2

=

∥∥∥∥∥ 1√
J

J∑
j=1

m
(
Wj; θ̂

)∥∥∥∥∥
2

+ op(1).

From the condition of Theorem 2, we get

op(1) =

∥∥∥∥∥ 1√
J

J∑
j=1

m
(
Ŵj; θ̂

)∥∥∥∥∥
2

≥

∥∥∥∥∥ 1√
J

J∑
j=1

m
(
Wj; θ̂

)∥∥∥∥∥
2

+ op(1)

op(1) =

∥∥∥∥∥ 1√
J

J∑
j=1

m
(
Wj; θ̂

)∥∥∥∥∥
2

.

Step 1.
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For asymptotic normality result, we need a stronger consistency result for Ã−1θ̂ than

Theorem 1. For that, let us apply the first-order Taylor’s expansion to the objective function

with regard to the parameter of interest θ0:

op(1) =
1√
J

J∑
j=1

m
(
Wj; θ̂

)
=

1√
J

J∑
j=1

m
(
W ∗

j ; Ã
−1θ̂
)

=
1√
J

J∑
j=1

m
(
W ∗

j ; θ
0
)
+

1

J

J∑
j=1

R1j

(
Ã−1θ̂, θ0

)
·
√
J
(
Ã−1θ̂ − θ0

)
.

We can apply the Taylor’s expansion since Assumption 3.a assumes twice-differentiability of

m.

R1j is a l× k matrix for the first-order remainder term in the expansion. The remainder

term coefficient matrix R1j can be rewritten as

R1j

(
Ã−1θ̂, θ0

)
=

∫ 1

0

∂

∂θ
m
(
W ∗

j ; θ
) ∣∣∣

θ=θ0+t(Ã−1θ̂−θ0)
dt.

Find that

∥∥∥∥∥ 1J
J∑

j=1

∫ 1

0

∂

∂θ
m
(
W ∗

j ; θ
) ∣∣∣

θ=θ0+t(Ã−1θ̂−θ0)
dt−

∫ 1

0

E

[
∂

∂θ
m
(
W ∗

j ; θ
) ∣∣∣

θ=θ0+t(Ã−1θ̂−θ0)

]
dt

∥∥∥∥∥
F

=

∥∥∥∥∥
∫ 1

0

(
1

J

J∑
j=1

∂

∂θ
m
(
W ∗

j ; θ
) ∣∣∣

θ=θ0+t(Ã−1θ̂−θ0)
− E

[
∂

∂θ
m
(
W ∗

j ; θ
) ∣∣∣

θ=θ0+t(Ã−1θ̂−θ0)

])
dt

∥∥∥∥∥
F

≤
√
lk · sup

t∈[0,1]

∥∥∥∥∥ 1J
J∑

j=1

∂

∂θ
m
(
W ∗

j ; θ
) ∣∣∣

θ=θ0+t(Ã−1θ̂−θ0)
− E

[
∂

∂θ
m
(
W ∗

j ; θ
) ∣∣∣

θ=θ0+t(Ã−1θ̂−θ0)

]∥∥∥∥∥
F

= op(1).

The first equality holds from Fubini’s theorem since the integral and the summation are both

defined with σ-finite measures on {1, · · · , J} and [0, 1]. The inequality holds from finding

that any component of the l × k matrix 1
J

∑J
j=1

∂
∂θ
m − E

[
∂
∂θ
m
]
for a given t ∈ [0, 1] and

therefore its integral over [0, 1] are bounded by the supremum in the Frobenius norm. The
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second equality holds from Assumption 3.b. Lastly, find that

∥∥∥∥∫ 1

0

E

[
∂

∂θ
m
(
W ∗

j ; θ
) ∣∣∣

θ=θ0+t(Ã−1θ̂−θ0)

]
dt− E

[
∂

∂θ
m
(
W ∗

j ; θ
) ∣∣∣

θ=θ0

]∥∥∥∥
F

≤
√
lk · sup

t∈[0,1]

∥∥∥∥E [ ∂

∂θ
m
(
W ∗

j ; θ
) ∣∣∣

θ=θ0+t(Ã−1θ̂−θ0)

]
− E

[
∂

∂θ
m
(
W ∗

j ; θ
) ∣∣∣

θ=θ0

]∥∥∥∥
F

= op(1).

The inquality holds since any component of the l×k matrix E
[

∂
∂θ
m(W ∗

j ; θ)
∣∣
θ=θ0=t(Ã−1θ̂−θ0)

]
dt

for a given t ∈ [0, 1] is bounded by the supremum over the Frobenius norm. θ 7→ ∂
∂θ
m(W ∗

j ; θ)

is continuously differentiable from Assumption 3.a. From the Leibniz’s rule, its expectation is

also differentiable and thus continuous; the equality holds. 1
J

∑J
j=1 R1j

(
Ã−1θ̂, θ0

)
converges

to a full rank matrix E
[

∂
∂θ
m(W ∗

j ; θ)
∣∣
θ=θ0

]
.

Lastly, since 1√
J

∑J
j=1 m

(
W ∗

j ; θ
0
)
is Op(1) from the CLT,

(
E

[
∂

∂θ
m
(
W ∗

j ; θ
) ∣∣∣

θ=θ0

]
+ op(1)

)
·
√
J
(
Ã−1θ̂ − θ0

)
= Op(1).

Therefore
√
J
(
Ã−1θ̂−θ0

)
= Op(1) by finding a small neighborhood aroundE

[
∂
∂θ
m
(
W ∗

j ; θ
)∣∣

θ=θ0

]
such that 1

J

∑J
j=1 R1j

(
Ã−1θ̂, θ0

)
is full rank and the Frobenius norm of its left inverse is

bounded: for any M∗ and MR,

Pr
{∥∥∥√J

(
Ã−1θ̂ − θ0

)∥∥∥
2
≥ M∗

}
≤ Pr


∥∥∥∥∥∥
(
1

J

J∑
j=1

R1j

(
Ã−1θ̂, θ0

))−1

1√
J

J∑
j=1

(
m
(
W ∗

j ; Ã
−1θ̂
)
−m

(
W ∗

j ; θ
0
))∥∥∥∥∥∥

2

≥ M∗


+ Pr

{
1

J

J∑
j=1

R1j

(
Ã−1θ̂, θ0

)
is not full rank

}

= Pr

{∥∥∥∥∥
(
E

[
∂

∂θ
m
(
W ∗

j ; θ
) ∣∣∣

θ=θ0

]
+ op(1)

)−1
∥∥∥∥∥
F

· ‖Op(1)‖F ≥ M∗

}
+ o(1)

≤ Pr

{
‖Op(1)‖F ≥ M∗

MR

}
+ Pr

{∥∥∥∥∥
(
E

[
∂

∂θ
m
(
W ∗

j ; θ
) ∣∣∣

θ=θ0

]
+ op(1)

)−1
∥∥∥∥∥
F

> MR

}
+ o(1).

The second probability in the last inequality goes to zero for large enough MR from the
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continuous mapping theorem since each component of the inverse matrix is a continuous

function of the original matrix. Given some ε > 0, first choose large enough MR so that the

second probability in the last inequality is arbitrarily small for large J and then choose large

enough M∗ so that the first probability is arbitrarily small as well. Then, we can find some

J∗ such that Pr
{∥∥√J

(
Ã−1θ̂ − θ)

)∥∥
F
≤ M∗

}
≤ ε for J ≥ J∗.

Step 2.

Again, let m̃ denote an arbitrary component of m. From the component-wise second-

order Taylor’s expansion,

op (1) =
1√
J

J∑
j=1

m̃
(
Wj; θ̂

)
=

1√
J

J∑
j=1

m̃
(
Wj; Ãθ

0
)
+

1

J

J∑
j=1

∂

∂θ
m̃ (Wj; θ)

∣∣
θ=Ãθ0

·
√
J
(
θ̂ − Ãθ0

)
+
(
θ̂ − Ãθ0

)⊺
· 1
J

J∑
j=1

R̃2j

(
θ̂, Ãθ0

)
·
√
J
(
θ̂ − Ãθ0

)

where R̃2j

(
θ̂, Ãθ0

)
is a k × k matrix for the second-order remainder term. Find that

R̃2j

(
θ̂, Ãθ0

)
=
(
Ã⊺
)−1

·
∫ 1

0

(1− t)
∂2

∂θ∂θ⊺
m̃
(
W ∗

j ; θ
) ∣∣∣

θ=θ0+t(Ã−1θ̂−θ0)
dt · Ã−1

from the Taylor’s theorem and by applying the chain rule. For any M∗∗ > 0,

Pr


∥∥∥∥∥ 1J

J∑
j=1

∫ 1

0

(1− t)
∂2

∂θ∂θ⊺
m̃
(
W ∗

j ; θ
) ∣∣∣

θ=θ0+t(Ã−1θ̂−θ0)
dt

∥∥∥∥∥
F

≥ M∗∗


≤ Pr

{
1

J

J∑
j=1

∥∥∥∥∫ 1

0

(1− t)
∂2

∂θ∂θ⊺
m̃
(
W ∗

j ; θ
) ∣∣∣

θ=θ0+t(Ã−1θ̂−θ0)
dt

∥∥∥∥
F

≥ M∗∗,
∥∥Ã−1θ̂ − θ0

∥∥
2
≤ η

}

+ Pr
{∥∥Ã−1θ̂ − θ0

∥∥
2
> η
}

≤ Pr

{
k

J

J∑
j=1

sup
∥θ′−θ0∥2≤η

∥∥∥∥ ∂2

∂θ∂θ⊺
m̃
(
W ∗

j ; θ
) ∣∣∣

θ=θ′

∥∥∥∥
F

≥ M∗∗

}
+ o(1).
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The last inequality holds from the fact that any component of ∂2

∂θ∂θ⊺ m̃ for a given t ∈ [0, 1]

and therefore any component of the integral
∫
(1− t) ∂2

∂θ∂θ⊺ m̃dt are bounded by the supremum

over the Frobenius norm, when
∥∥Ã−1θ̂ − θ0

∥∥
2
≤ η. Given some ε > 0, we can find large

enough M∗∗ and J∗∗ such that

Pr


∥∥∥∥∥ 1J

J∑
j=1

∫ 1

0

(1− t)
∂2

∂θ∂θ⊺
m̃
(
W ∗

j ; θ
) ∣∣∣

θ=θ0+t(Ã−1θ̂−θ0)
dt

∥∥∥∥∥
F

≥ M∗∗

 ≤ ε

for any J ≥ J∗∗, from Assumption 3.a. Ã⊺ 1
J

∑J
j=1 R̃2j

(
θ̂, Ãθ0

)
Ã is Op(1).

Lastly, since
√
J
(
Ã−1θ̂ − θ0

)
= Op(1), the second-order remainder term in the second-

order approximation is op(1):

∣∣∣∣∣(θ̂ − Ãθ0
)⊺

· 1
J

J∑
j=1

R̃2j

(
θ̂, Ãθ0

)
·
√
J
(
θ̂ − Ãθ0

)∣∣∣∣∣∣∣∣∣∣(Ã−1θ̂ − θ0
)⊺

· Ã⊺ 1

J

J∑
j=1

R̃2j

(
θ̂, Ãθ0

)
Ã ·

√
J
(
Ã−1θ̂ − θ0

)∣∣∣∣∣
≤
∥∥∥Ã−1θ̂ − θ0

∥∥∥
2
·

∥∥∥∥∥Ã⊺ 1

J

J∑
j=1

R̃2j

(
θ̂, Ãθ0

)
Ã

∥∥∥∥∥
F

·
∥∥∥√J

(
Ã−1θ̂ − θ0

)∥∥∥
2
= op(1).

Thus,

√
J
(
θ̂ − Ãθ0

)
=

(
1

J

J∑
j=1

∂

∂θ
m
(
Wj; Ãθ

0
))−1

1√
J

J∑
j=1

m
(
Wj; Ãθ

0
)
+ op(1).

C.3 Proposition 1

For the convenience of notation, let λj ∈ {1, · · · , ρ} for true latent factor λj as well.

Step 1

28



From the within-cluster iidness,

E

[
Nj

∥∥∥F̂j −G(λj)
∥∥∥
w,2

2
]

= E

NjE

∫  1

Nj

Nj∑
i=1

1{Xij ≤ x} −
(
G(λj)

)
(x)

2

w(x)dx

∣∣∣∣∣Nj, Zj, λj


= E

[∫
Var

(
1{Xij ≤ x}

∣∣Nj, Zj, λj

)
w(x)dx

]
≤ 1

4
.

The second equality holds from exchanging the order of integration and expectation. Thus,

1

J

J∑
j=1

∥∥∥F̂j −G(λj)
∥∥∥
w,2

2

= Op

(
1

Nmin

)

Step 2

Let us connect Ĝ(1), · · · , Ĝ(ρ) to G(1), · · · , G(ρ). Define σ(r) such that

σ(r) = argmin
r̃

∥∥∥Ĝ(r̃)−G(r)
∥∥∥
w,2

.

We can think of σ(r) as the ‘oracle’ estimate that cluster j would have been assigned to,

when Fj = G(r) is directly observed and Ĝ(1), · · · , Ĝ(ρ) are given. Then,

∥∥∥Ĝ(σ(r))−G(r)
∥∥∥
w,2

2

=
J∑J

j=1 1{λj = r}
· 1
J

J∑
j=1

∥∥∥Ĝ(σ(r))−G(λj)
∥∥∥
w,2

2

1{λj = r}

≤ J∑J
j=1 1{λj = r}

· 1
J

J∑
j=1

∥∥∥Ĝ(λ̂j)−G(λj)
∥∥∥
w,2

2

≤ 2J∑J
j=1 1{λj = r}

·

(
1

J

J∑
j=1

∥∥∥Ĝ(λ̂j)− F̂j

∥∥∥
w,2

2

+
1

J

J∑
j=1

∥∥∥F̂j −G(λj)
∥∥∥
w,2

2
)

≤ 4J∑J
j=1 1{λj = r}

· 1
J

J∑
j=1

∥∥∥F̂j −G(λj)
∥∥∥
w,2

2

.
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The last inequality holds since
∑J

j=1

∥∥∥Ĝ(λ̂j)− F̂j

∥∥∥
w,2

2

≤
∑J

j=1

∥∥∥G(λj)− F̂j

∥∥∥
w,2

2

from the

definition of Ĝ and λ̂. From Assumption 4.a,
∑J

j=1 1{λj = r}/J p−→ µ(r) > 0 as J → ∞.

Thus, ∥∥∥Ĝ(σ(r))−G(r)
∥∥∥
w,2

2 p−→ 0

as J → ∞ from Assumption 4.c and Step 1.

Note that for any r′ 6= r,

∥∥∥Ĝ(σ(r))−G(r′)
∥∥∥
w,2

2

≥ 1

2
‖G(r)−G(r′)‖w,2

2 −
∥∥∥Ĝ (σ (r))−G(r)

∥∥∥
w,2

2

=
1

2
c(r, r′) + op(1)

as J → ∞ from the same argument from above and Assumption 4.c.

Find that σ is bijective with probability converging to one: with ε∗ = mink ̸=k′
1
8
c(r, r′),

Pr {σ is not bijective.} ≤
∑
r ̸=r′

Pr {σ(r) = σ(r′)}

≤
∑
r ̸=r′

Pr

{∥∥∥Ĝ(σ(r))− Ĝ(σ(r′))
∥∥∥
w,2

2

< ε∗
}

≤
∑
r ̸=r′

Pr

{
1

2

∥∥∥Ĝ(σ(r))−G(r′)
∥∥∥
w,2

2

−
∥∥∥Ĝ(σ(r′))−G(r′)

∥∥∥
w,2

2

< ε∗
}

≤
∑
r ̸=r′

Pr

{
1

4
‖G(r)−G(r′)‖w,2

2
+ op(1) < ε∗

}
→ 0

as J → ∞. When σ is bijective, relabel Ĝ(1), · · · , Ĝ(ρ) so that σ(r) = r.

Step 3

Let us put a bound on Pr
{
λ̂j 6= σ(λj)

}
, the probability of estimated group being different

from ‘oracle’ group; this means that there is at least one r 6= σ(λj) such that that F̂j is closer

to Ĝ(r) than Ĝ(σ(λj)):

Pr
{
λ̂j 6= σ(λj)

}
≤ Pr

{
∃ r s.t.

∥∥∥Ĝ(r)− F̂j

∥∥∥
w,2

≤
∥∥∥Ĝ(σ(λj))− F̂j

∥∥∥
w,2

}
.
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The discussion on the probability is much more convenient when σ is bijective and Ĝ(σ(r))

is close to G(r) for every r. Thus, let us instead focus on the joint probability:

Pr

{
λ̂j 6= λj,

ρ∑
r=1

∥∥∥Ĝ(r)−G(r)
∥∥∥
w,2

2

< ε, and σ is bijective.
}
.

Note that in the probability, σ(r) is replaced with r and σ(λj) with λj since we are condi-

tioning on the event that σ is bijective: relabeling is applied and Ĝ(r) can be thought of as a

direct estimate for G(r). For notational brevity, let Aε denote the event of σ being bijective

and
∑ρ

r=1

∥∥∥Ĝ(r)−G(r)
∥∥∥
w,2

2

< ε. From Step 2, we have that Pr {Aε} → 1 as J → ∞ for

any ε > 0.

Then, with c∗ = minr ̸=r′ c(r, r
′) > 0,

Pr
{
λ̂j 6= λj, Aε

}
≤ Pr

{
∃ r 6= λj s.t.

∥∥∥Ĝ(r)− F̂j

∥∥∥
w,2

≤
∥∥∥Ĝ(λj)− F̂j

∥∥∥
w,2

, Aε

}
≤ Pr

{
∃ r 6= λj s.t.

1

2

∥∥∥Ĝ(r)−G(λj)
∥∥∥
w,2

2

−
∥∥∥F̂j −G(λj)

∥∥∥
w,2

2

≤ 2
∥∥∥Ĝ(λj)−G(λj)

∥∥∥
w,2

2

+ 2
∥∥∥G(λj)− F̂j

∥∥∥
w,2

2

, Aε

}
≤ Pr

{
∃ r 6= λj s.t.

1

4
‖G(r)−G(λj)‖w,2

2 − 1

2

∥∥∥Ĝ(r)−G(r)
∥∥∥
w,2

2

≤ 2
∥∥∥Ĝ(λj)−G(λj)

∥∥∥
w,2

2

+ 3
∥∥∥G(λj)− F̂j

∥∥∥
w,2

2

, Aε

}
≤ Pr

{
∃ r 6= λj s.t.

1

4
‖G(r)−G(λj)‖w,2

2

≤ 5

2

ρ∑
r′=1

∥∥∥Ĝ(r′)−G(r′)
∥∥∥
w,2

2

+ 3
∥∥∥G(λj)− F̂j

∥∥∥
w,2

2

, Aε

}

≤ Pr

{
c∗

4
≤ 5

2

ρ∑
r=1

∥∥∥Ĝ(r)−G(r)
∥∥∥
w,2

2

+ 3
∥∥∥G(λj)− F̂j

∥∥∥
w,2

2

, Aε

}

≤ Pr

{
c∗

12
− 5

6
ε ≤

∥∥∥G(λj)− F̂j

∥∥∥
w,2

2
}

The last inequality is from the construction of the event Aε. In the last inequality Aε can

be dropped since the probability does not require σ being bijective to be well-defined. Set
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ε∗ = c∗

20
so that c∗

12
− 5

6
ε∗ = c∗

24
> 0.

By repeating the expansion for every j,

Pr
{
∃ j s.t. λ̂j 6= λj

}
≤ Pr

{
∃ j s.t. λ̂j 6= λj, Aε∗

}
+ Pr {Aε∗

c}

≤
J∑

j=1

Pr

{
c∗

24
≤
∥∥∥G(λj)− F̂j

∥∥∥
w,2

2
}
+ Pr {Aε∗

c} .

We already know Pr {Aε∗
c} = o(1) as J → ∞. It remains to show that the first quantity in

the RHS of the inequality is o(J/N ν
min) for any ν > 0. Let ε∗∗ denote c∗

24
. Choose an arbitrary

ν > 0. From the within-cluster iidness,

Pr

{
ε∗∗ ≤

∥∥∥F̂j −G(λj)
∥∥∥
w,2

2
}

≤ E

[
Pr

{
ε∗∗ ≤

∥∥∥F̂j −G(λj)
∥∥∥
∞

2∣∣∣Nj, Zj, λj

}]
≤ E [C∗(Nj + 1) exp (−2Njε

∗∗)]

with some constant C∗ > 0, by taking the least favorable case over λj = 1, · · · , ρ and

applying the Dvoretzky–Kiefer–Wolfowitz inequality. Thus, for any ν > 0,

Nmin
ν

J

J∑
j=1

Pr

{
ε∗∗ ≤

∥∥∥G(λj)− F̂j

∥∥∥
w,2

2
}

= Nmin
νE [C∗(Nj + 1) exp (−2Njε

∗∗)]

≤ C∗Nmin
ν(Nmin + 1)

exp (2Nminε∗∗)
= o(1)

as J → ∞. The inequality holds for large n; n 7→ (n+ 1) exp(−2nε∗∗) is decreasing in n for

large n.
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C.4 Proposition 2

Step 1. Firstly, let us discuss the rotation on the latent factor. For notational simplicity,

let

V =


∫
R g1(x)

2w(x)dx · · ·
∫
R gρ(x)g1(x)w(x)dx

... . . . ...∫
R g1(x)gρ(x)w(x)dx · · ·

∫
R gρ(x)

2w(x)dx

 ,

Λ =

(
λ1 · · · λJ

)
.

Suppose rank(M) = rank(Λ⊺V Λ) = ρ and consider an eigen-decomposition for M with

orthonormal eigenvectors, using the ρ positive eigenvalues: V1, · · · , Vρ. Let Q be a J × ρ

matrix with the orthonormal eigenvectors as columns and let Λ̃ =
√
JQ⊺. Then, 1

J
Λ̃Λ̃⊺ =

Q⊺Q = Iρ and

Λ⊺V Λ = M = Qdiag (V1, · · · , Vρ)Q
⊺ = Λ̃⊺diag

(
V1

J
, · · · , Vρ

J

)
Λ̃.

Let

A⊺ = V

(
1

J
ΛΛ̃⊺

)
diag

(
V1

J
, · · · , Vρ

J

)−1

,

we have

Λ⊺A⊺ = Λ⊺V

(
1

J
ΛΛ̃⊺

)
diag

(
V1

J
, · · · , Vρ

J

)−1

= Λ̃⊺diag
(ν1
J
, · · · , νρ

J

) 1

J
Λ̃Λ̃⊺diag

(ν1
J
, · · · , νρ

J

)−1

= Λ̃⊺.

We have a rotation between the matrix of the true latent factor Λ and the matrix of (rescaled)

eigenvectors Λ̃.
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The rotation matrix A in Proposition 2 satisfies Assumption 2.f:

∥∥A−1
∥∥
F
=

∥∥∥∥∥diag
(
V1

J
, · · · , Vρ

J

)(
1

J
ΛΛ̃⊺

)−1

V −1

∥∥∥∥∥
F

.

Find that

1

J
ΛΛ̃⊺ · diag

(
V1

J
, · · · , Vρ

J

)
· 1
J
Λ̃Λ⊺ =

1

J
ΛΛ⊺ · V · 1

J
ΛΛ⊺

(
1

J
ΛΛ̃⊺

)−1

=

(
1

J
ΛΛ⊺ · V · 1

J
ΛΛ⊺

)−1

· 1
J
ΛΛ̃⊺ · diag

(
V1

J
, · · · , Vρ

J

)

and since the Frobenius norm is invariant to a unitary operation

∥∥∥∥ 1JΛΛ̃⊺
∥∥∥∥
F

≤ 1√
J
‖Λ‖F =

(
1

J

J∑
j=1

‖λj‖2
2

) 1
2

= Op(1).

(
1
J
ΛΛ̃⊺

)−1

is also Op(1), satisfying Assumtion 2.f.

Step 2. Now, we show the estimate M̂ is close to the true matrix M . The following

convergence rate on
∥∥∥M̂ −M

∥∥∥
F
is a multivariate extension of Proposition 1 and Theorem 1

of Kneip and Utikal (2001).

∥∥∥M̂ −M
∥∥∥
F
= Op

(
J√

minj Nj

)
.

To avoid notational complexity, I will use subscript λ to indicate that the expectation is

conditioning on (Nj, Zj, λj). Find that

Eλ

[(
M̂jk −Mjk

)2]
= Varλ

(
M̂jk

)
+
(
Eλ

[
M̂jk

]
−Mjk

)2
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From the kernel estimation,

Eλ

[
1

det(H)
1
2

K
(
H− 1

2 (x−Xij)
)]

=

∫
Rp

1

det(H)
1
2

K
(
H− 1

2 (x− x′)
)
fj(x

′)dx′

=

∫
Rp

K(t)fj
(
x−H

1
2 t
)
dt by letting x′ = x−H

1
2 t

=

∫
Rp

K(t)

(
fj(x)− f

(1)
j (x)⊺H

1
2 t+ t⊺H

1
2
⊺ f

(2)
j (x̃)

2
H

1
2 t

)
dt

= fj(x) +

∫
Rp

K(t) · t⊺H
1
2
⊺ f

(2)
j (x̃)

2
H

1
2 tdt

for some x̃ depending on x and x−H
1
2 t. The second equality holds from the differentiability

in Assumption 5.a and the last equality holds from the conditions i. and ii. given in

Proposition 2. Lastly, from the condition iii. in Proposition 2 and the boundedness from

Assumption 5.a,

∣∣∣∣∣
∫
Rp

K(t) · t⊺H
1
2
⊺ f

(2)
j (x̃)

2
H

1
2 tdt

∣∣∣∣∣ ≤ p2C

2
·max

x

∥∥∥H 1
2
⊺
f
(2)
j (x)H

1
2

∥∥∥
F
≤ p3C2

2
·
∥∥H 1

2

∥∥
F

2
.

The first inequality is from the condition iii. and the second inequality is from Assumption

5.a. Then,

∣∣∣∣∣Eλ

[
1

det(H)
1
2

K
(
H− 1

2 (x−Xij)
)]

Eλ

[
1

det(H)
1
2

K
(
H− 1

2 (x−Xik)
)]

− fj(x)fk(x)

∣∣∣∣∣
≤ C1

∥∥H 1
2

∥∥
F

2
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with some C1 > 0 that does not depend on λj or H. By extending this,

∣∣∣Eλ

[
M̂jk −Mjk

]∣∣∣
≤
∫
Rp

∣∣∣∣∣∣Eλ

K
(
H− 1

2 (x−X1j)
)

det(H)
1
2

Eλ

K
(
H− 1

2 (x−X2k)
)

det(H)
1
2

− fj(x)fk(x)

∣∣∣∣∣∣w(x)dx
≤ C1

∥∥H 1
2

∥∥
F

2
.

Eλ and
∫
R are interchangeable from Fubini’s theorem. For Varλ(M̂jk), find that

Varλ

(
M̂jk

)
=

∑Nj

i=1

∑Nk
i′=1

Nj
2Nk

2

Varλ (Aii′) +
∑
l ̸=i

Covλ (Aii′ , Ali′) +
∑
l ̸=i′

Covλ (Aii′ , Ail)

1{j 6= k}

+

∑Nj

i=1

∑
i′=i

Nj
2 (Nj − 1)2

Varλ (Aii′) +
∑
l ̸=i,i′

Covλ (Aii′ , Ali′) +
∑
l ̸=i,i′

Covλ (Aii′ , Ail)

1{j = k}

where

Aii′ =

∫
Rp

K
(
H− 1

2 (x−Xij)
)

det(H)
1
2

K
(
H− 1

2 (x−Xi′k)
)

det(H)
1
2

w(x)dx.

We have that for some l 6= i′,

Eλ

[
Aii′

2
]

=

∫
Rp

∫
Rp

∫
Rp

K
(
H− 1

2 (x− x′)
)

det(H)
1
2

K
(
H− 1

2 (x− x′′)
)

det(H)
1
2

w(x)dx

2

fj(x
′)fk(x

′′)dx′dx′′

=

∫
Rp

∫
Rp

(∫
Rp

K (t)
K
(
t+H− 1

2 (x′ − x′′)
)

det(H)
1
2

w
(
x′ +H

1
2 t
)
dt

)2

fj(x
′)fk(x

′′)dx′dx′′

=
1

det(H)
1
2

∫
Rp

∫
Rp

(∫
Rp

K (t)K (t+ s)w
(
x′′ +H

1
2 (t+ s)

)
dt

)2

fj
(
x′′ +H

1
2 s
)
fk(x

′′)dsdx′′
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by letting x = x′ +H
1
2 t and x′ = x′′ +H

1
2 s and

Eλ [Aii′Ail]

=

∫
Rp

∫
Rp

∫
Rp

∫
Rp

K
(
H− 1

2 (x− x′)
)

det(H)
1
2

K
(
H− 1

2 (x− x′′)
)

det(H)
1
2

w(x)dx


·

∫
Rp

K
(
H− 1

2 (x− x′)
)

det(H)
1
2

K
(
H− 1

2 (x− x′′′)
)

det(H)
1
2

w(x)dx

 fj(x
′)fk(x

′′)fk(x
′′′)dx′dx′′dx′′′

=

∫
Rp

∫
Rp

∫
Rp

∫
Rp

K (t)
K
(
t+H− 1

2 (x′ − x′′)
)

det(H)
1
2

w
(
x′ +H

1
2 t
)
dt


·

∫
Rp

K (t)
K
(
t+H− 1

2 (x′ − x′′′)
)

det(H)
1
2

w
(
x′ +H

1
2 t
)
dt

 fj(x
′)fk(x

′′)fk(x
′′′)dx′dx′′dx′′′

=
1

det(H)
1
2

∫
Rp

∫
Rp

∫
Rp

(∫
Rp

K (t)K (t+ s)w
(
x′′ +H

1
2 (t+ s)

)
dt

)
·
(∫

Rp

K (t)K
(
t+ s+H− 1

2 (x′′ − x′′′)
)
w
(
x′′ +H

1
2 (t+ s)

)
dt

)
· fj
(
x′′ +H

1
2 s
)
fk(x

′′)fk(x
′′′)dsdx′′dx′′′

=

∫
Rp

∫
Rp

∫
Rp

(∫
Rp

K (t)K (t+ s)w
(
x′′′ +H

1
2 (t+ s+ u)

)
dt

)
·
(∫

Rp

K (t)K (t+ s+ u)w
(
x′′′ +H

1
2 (t+ s+ u)

)
dt

)
· fj
(
x′′ +H

1
2 s
)
fk
(
x′′′ +H

1
2u
)
fk(x

′′′)dsdudx′′′

by letting x = x′ + H
1
2 t, x′ = x′′ + H

1
2 s and x′′ = x′′′ + H

1
2u. Thus, with some constant

C2 > 0 that does not depend on λj or λk, Varλ(Aii′) ≤ C2/det(H)
1
2 and |Covλ(Aii′ , Ail)| ≤ C2

and

Varλ

(
M̂jk

)
≤


C2

(
1

NjNkdet(H)
1
2

+
1

Nj

+
1

Nk

)
, if j 6= k

C2

(
1

Nj(Nj − 1)det(H)
1
2

+
2

Nj − 1

)
, if j = k
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Since minj Njdet(H)
1
2 → ∞ and minj Nj

∥∥H 1
2

∥∥
F

4
= O(1) as J → ∞, we have

J∑
j=1

J∑
k=1

Eλ

[(
M̂jk −Mjk

)2]
= O

(
J2

minj Nj

)
∥∥∥M̂ −M

∥∥∥
F
=

(
J∑

j=1

J∑
k=1

(
M̂jk −Mjk

)2) 1
2

= Op

(
J√

minj Nj

)

Step 3. Lastly, given the rate on
∥∥∥M̂ −M

∥∥∥
F
, the convergence rate on

∥∥∥Λ̃− Λ̂
∥∥∥
F

is

obtained by applying Lemma A.1.b of Kneip and Utikal (2001), as in Theorem 1.b of Kneip

and Utikal (2001).

Firstly, let V̂r denote the r-the largest eigenvalue of M̂ ; V̂r is an estimate of Vr, as defined

in Assumption 5. Note that Vr = 0 for ρ < r ≤ J . Also, let q̂r denote the (orthonormal)

eigenvector of M̂ associated with the r-th eigenvalue and similarly for qr. Recall that

Λ̂ =
√
JQ̂⊺ =

√
J

(
q̂1 · · · q̂ρ

)⊺

Λ̃ =
√
JQ⊺ =

√
J

(
q1 · · · qρ

)⊺

IJ =

(
q1 · · · qJ

)
q1

⊺

...

qJ
⊺

 =
J∑

r=1

qrqr
⊺

For some r ≤ ρ,

q̂r =

(
qrqr

⊺ +
∑
r′ ̸=r

qr′qr′
⊺

)
q̂r = (qr

⊺q̂r) qr +
∑
r′ ̸=r

qr′qr′
⊺q̂r.
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Since q̂⊺r q̂r = qr
⊺qr = 1, we have 1 = (qr

⊺q̂r)
2 + q̂⊺r

∑
r′ ̸=r qr′qr′

⊺q̂r. Thus,

qr
⊺q̂r = ±

(
1− q̂⊺r

∑
r′ ̸=r

qr′qr′
⊺q̂r

) 1
2

,

q̂r − qr =

(1− q̂⊺r
∑
r′ ̸=r

qr′qr′
⊺q̂r

) 1
2

− 1

 qr +
∑
r′ ̸=r

qr′qr′
⊺q̂r.

The second equality holds by changing signs of q̂r and qr so that qr⊺q̂r > 0. Note that RHS

will be zero when q̂⊺r
∑

r′ ̸=r qr′qr′
⊺q̂r = 0 and

∑
r′ ̸=r qr′qr′

⊺q̂r is a zero vector.

Firstly, let us find a bound on
∑

r′ ̸=r qr′qr′
⊺q̂r. Note that

(M − VrIJ) q̂r =
(
M̂ −

(
M̂ −M

)
− VrIJ

)
q̂r

=
(
V̂r − Vr

)
q̂r −

(
M̂ −M

)
q̂r

since V̂r is the corresponding eigenvalue of M̂ for q̂r. Let Sr =
∑

r′ ̸=r
1

Vr′−Vr
qr′qr′

⊺. Sr is

well-defined from Assumption 5.b. By multiplying Sr to the equality above, we get

Sr

((
V̂r − Vr

)
q̂r −

(
M̂ −M

)
q̂r

)
= Sr (M − VrIj) q̂r

= Sr

(
ρ∑

r′=1

Vr′qr′qr′
⊺ − VrIj

)
q̂r

=

(∑
r′ ̸=r

Vr′

Vr′ − Vr

qr′q
′
r
⊺ −

∑
r′ ̸=r

Vr

Vr′ − Vr

qr′qr′
⊺

)
q̂r

=
∑
r′ ̸=r

qr′qr′
⊺q̂r.

Find that
∣∣V̂r − Vr

∣∣ ≤ ∥∥M̂ −M
∥∥
Ind,2

≤ ‖M̂ −M‖F (see Chapter 8 Theorem 9 of Bellman
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(1997)). ‖ · ‖Ind,2 denotes the matrix norm induced by the vector norm ‖ · ‖2. Also,

‖Sr‖Ind,2 =
∥∥∥∑

r′ ̸=r

1

Vr′ − Vr

qr′qr′
⊺
∥∥∥
Ind,2

= sup
v

∥∥∥∑
r′ ̸=r

1

Vr′ − Vr

qr′qr′
⊺v
∥∥∥
2

s.t. v =
J∑

r′=1

cr′qr′ and |v⊺v| =
∣∣∑

r′

cr′
2
∣∣ ≤ 1

= sup
c1,··· ,cJ

∥∥∥∑
r′ ̸=r

cr′

Vr′ − Vr

qr′
∥∥∥
2

s.t.
∣∣∑

r′

cr′
2
∣∣ ≤ 1

= sup
c1,··· ,cJ

(∑
r′ ̸=r

(
cr′

Vr′ − Vr

)2
) 1

2

s.t.
∣∣∑

r′

cr′
2
∣∣ ≤ 1

≤ 1

minr′ ̸=r |Vr′ − Vr|
.

Using the two inequalities, we get

∥∥∥∑
r′ ̸=r

qr′qr
⊺q̂r

∥∥∥
2
≤
∣∣∣V̂r − Vr

∣∣∣ ‖Srq̂r‖2 +
∥∥∥Sr

(
M̂ −M

)
q̂r

∥∥∥
2

≤
∥∥∥M̂ −M

∥∥∥
F
‖Sr‖Ind,2 ‖q̂r‖2 + ‖Sr‖Ind,2

∥∥∥M̂ −M
∥∥∥
Ind,2

‖q̂r‖2

≤ 2‖M̂ −M‖F
minr′ ̸=r |Vr′ − Vr|

=
1

J
Op

(
J√

minj Nj

)
= Op

(
1√

minj Nj

)
.

The last equality holds from Assumption 5.b: minr′ ̸=r |Vr′−Vr|
J

converges to a nonzero constant

in probability.
∑

r′ ̸=r qr′qr′
⊺q̂r converges to a zero vector, when minj Nj goes to infinity.

Secondly, let us put a bound on q̂⊺r
∑

r′ ̸=r qr′qr′
⊺q̂r to show that

(
1− q̂⊺r

∑
r′ ̸=r qr′qr′

⊺q̂r

) 1
2

converges to one. The convergence of q̂⊺r
∑

r′ ̸=r qr′qr′
⊺q̂r to zero directly follows from the
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convergence above:

q̂⊺r
∑
r′ ̸=r

qr′qr′
⊺q̂r =

(∑
r′ ̸=r

qr′qr′
⊺q̂r

)⊺∑
r′ ̸=r

qr′qr′
⊺q̂r

=
∥∥∑
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qr′qr′
⊺q̂r
∥∥
2

2
= Op

(
1

minj Nj

)
.

Note that for x ∈ [0, 1], |(1− x)
1
2 − 1| = 1− (1− x)

1
2 ≤ x. Thus,

∥∥∥((1− q̂⊺r
∑
r′ ̸=r

qr′qr′
⊺q̂r

) 1
2 − 1

)
qr

∥∥∥
2
≤
∣∣∣(1− q̂⊺r

∑
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2 − 1

∣∣∣
≤ q̂⊺r

∑
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⊺q̂r = Op

(
1

minj Nj

)

By combining the two bounds, we have

‖q̂r − qr‖2 = Op

(
1√

minj Nj

)

for r ≤ ρ, by some sign change on q̂r. Accordingly,

∥∥∥Λ̂− Λ̃
∥∥∥
F
=

(
ρ∑

r=1

J‖q̂r − qr‖2F

) 1
2

= Op

( √
J√

minj Nj

)
.
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